
INFORMATION MODEL FOR

MACHINE-TOOL-PERFORMANCE TESTS

Y. Tina Lee
Manufacturing Systems Integration Division

National Institute of Standards and Technology
Gaithersburg, MD 20899-8260

Johannes A. Soons
M. Alkan Donmez

Automated Production Technology Division
National Institute of Standards and Technology

Gaithersburg, MD 20899-8220

ABSTRACT
This report specifies an information model of machine-tool-performance tests in the EXPRESS [1]
language. The information model provides a mechanism capable of describing the properties and results of
machine-tool-performance tests. The objective of the information model is a standardized, computer-
interpretable representation that allows for efficient archiving and exchange of performance test data
throughout the life cycle of the machine. The report also demonstrates the implementation of the
information model using three different implementation methods.

Keywords: data exchange, EXPRESS language, information model, machine performance test, machine
tools

DISCLAIMER
Certain commercial equipment, instruments, or materials are identified in this paper in order to facilitate
understanding. Such identification does not imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the
best available for the purpose.

Table of Contents

1. INTRODUCTION 1

1.1 Objective 1
1.2 Problem Statement 1
1.3 Scope 1
1.4 Modeling Language and Implementation Methods 2

2. INFORMATION MODEL 3

2.1 Structure of Data Requirements 3
2.2 EXPRESS Information Model 6

2.2.1 Entity Definitions 6
2.2.2 Type Definition 16

3. IMPLEMENTATION SAMPLES 19

3.1 ISO 10303 Part 21 Exchange Structure 19
3.2 XML Document 21
3.3 Relational Tables 24

4. USE OF THE INFORMATION MODEL 26

5. CONCLUSION 26

APPENDIX A EXPRESS KEYWORDS 27

REFERENCES
29

1

1. Introduction

1.1 Objective

This report specifies an information model of machine-tool-performance tests in the EXPRESS modeling
language [1]. It is based on the information model described in the Data Specification for Machine Tool
Performance Tests, Version 2.3e [2]. The objective of the information model is a standardized, computer-
interpretable representation that allows for efficient archiving and exchange of performance test data
throughout the life cycle of a machine tool. It serves as a basis for generating database schemas, database
calls, and neutral file formats. Performance test data of machine tools is used for machine acceptance,
performance tracking, software compensation, and to evaluate the capability of a machine to manufacture
a part to specified tolerances.

The information model specifies the test procedure, the test conditions, the used equipment, the
measurement set-up, and the test results. It can be used to describe the properties and results of a
performance test at a level close to the raw measurement data. As such, the information elements enable
the user to re-create the set-up, equipment settings, and measurement procedure. The model captures key
information on the large variety of possible test set-ups and measurement procedures, which is essential for
the interpretation of the test results. A subset of the specification can be used to summarize the test,
focusing on performance parameters that are estimated from the measurement results.

The information model addresses machine tool properties that are verified by performance tests. It
complements machine-tool-specification data that is not tested, e.g., the machine configuration, the
workspace, weight and size of the machine, tool holder standard, auxiliary devices, etc. [3].

The information model is intended to serve as the starting point for a future, standardized representation.
The model is expected to change and grow based on further review and future implementation experience.

1.2 Problem Statement

Today’s manufacturing industry greatly relies on computer technology to support activities throughout a
product’s life cycle. Efficient and distributed access to the performance data of machine tools is important
in manufacturing. The results of performance tests are used for machine acceptance, predictive
maintenance, error compensation, and to evaluate the capability of a machine to manufacture parts to
specified tolerances. A critical enabler to the efficient interchange and storage of performance data is a
unified information model for the results and properties of performance tests.

Currently, there is no agreed-upon mechanism for representing the properties and results of machine-tool-
performance tests [2]. There exists a variety of software packages for the performance evaluation of
machine tools. They usually have been developed by the manufacturer of a particular measurement device,
such as a laser interferometer or a ball bar, and are tailored to that particular instrument. The software
packages employ different data models and store the data in files using vendor-specific formats. This
complicates data exchange, data storage in databases, and use of the data by third-party software.
Furthermore, the stored data is often limited to the data required to produce the graphs and numbers
specified in the various standards for machine-tool-performance evaluation (e.g., [4,5,6]). This may result
in inefficient access or even loss of the additional data that is required for other applications, such as virtual

2

machining and software error compensation. Finally, not all tests described in the standards are addressed
by existing software for machine tool testing. This is often the case for tests that require generic
equipment, such as displacement indicators. Users have created their own “in-house” methods, often using
spreadsheets, to store the properties and results of these tests, often on an ad-hoc basis.

1.3 Scope

This specification supports the majority of instrumented, machine-tool-performance tests defined in the
American [4,5] and ISO [6] standards:

a) Positioning accuracy and repeatability of linear and angular positioning axes.
b) Geometric errors of linear and angular positioning axes.
c) Spindle axis of rotation.
d) Machine thermal tests: ETVE, spindle, axis, and composite.
e) Critical alignments: parallelism and squareness of machine axes.
f) Circular contouring tests.
g) Diagonal displacement tests.
h) Subsystem repeatability (tool change, turret, gage line, and pallet repeatability).
i) Compliance and hysteresis.

Of these tests the following information is described:

a) Date and time of the test.
b) Identification of the machine tool on which the test was performed.
c) Indication as to why the test was performed.
d) The operator who performed the test.
e) The machine status and environmental conditions during the test.
f) The standard in which the test is defined.
g) The equipment and software used to perform the test.
h) The measurement set-up and operating parameters.
i) The raw measurement data.
j) The calculated performance parameters.

1.4 Modeling Language and Implementation Methods

The information model presented in this report is in the EXPRESS language. The EXPRESS modeling
language [1] was developed as part of the International Organization for Standardization (ISO), most
commonly known as the 10303 Standard for the Exchange of Product Model Data (STEP) [7]. STEP is an
international standard, the result of an effort to develop a mechanism for digitally representing the physical
and functional characteristics of a product throughout the product’s life cycle. STEP includes information
models and mechanisms for representing the models and related data. EXPRESS is a formally specified
structured language. EXPRESS models have an object-oriented flavor. The reason EXPRESS is chosen
here is three-fold: EXPRESS is primarily an information modeling language, EXPRESS is a textual
representation that permits machine processing of the specification, and EXPRESS consists of language
elements that allow an unambiguous object definition and specification of constraints on the objects defined.

3

An information model provides a sharable, stable, and organized structure of information requirements. It
is developed to preserve independence from both usage and implementation. Implementation independence
allows users to select their implementation methods. The selection of an implementation method is heavily
dependent on the target environment where the application system resides. Currently, the implementation
methods used by the manufacturing community include:

1) data transfer via a working form, which is a structured, in-memory representation of data
2) data transfer via an exchange file, which is a file with a predefined structure or format
3) data transfer using a database management system [8]

STEP introduced the 10303 Exchange Structure, or the 10303-21, or the Part 21 file, as an implementation
method for actual EXPRESS models [9]. A Part 21 file contains instances of the various entities defined
by the EXPRESS information model. The Part 21 file format is just one of the implementation methods
that implement the EXPRESS information models. Tools that support the implementation of EXPRESS
information models are briefly described in Section 4.

2. Information Model

In this section, an EXPRESS information model for representing the properties and results of machine-tool-
performance tests is presented. Subsection 2.1 describes the structure of data requirements. The schema
is presented in detail in subsection 2.2. Appendix A contains the listing of EXPRESS keywords that are
used in the schema.

2.1 Structure of Data Requirements

The information model presented in subsection 2.2 has been based on the “Data Specification for Machine
Tool Performance Tests, Version 2.3e”[2]. The large variety of addressed performance tests are classified
into four groups:

1) Circular: tests where error motions are measured at points on a circular path in the machine
workspace.

2) Line: tests where error motions are measured at points on a line in the space spanned by
the positioning axes of the machine (e.g., positioning accuracy, axis geometry,
diagonal displacement accuracy, axis alignment, and thermal distortion caused by
axis motion).

3) Point: tests where error motions are measured at a single point in the space spanned by the
positioning axes of the machine (e.g., subsystem repeatability, spindle axis of
rotation, spindle thermal stability, and Environmental Temperature Variation Error).

4) Compliance: tests for the compliance and hysteresis of the machine under static loads.

The specifications for other performance tests, e.g., CNC performance tests, machining tests, and tests
addressing the measurement capabilities of a machine tool, are under development and will follow the
structure outlined below. Figure 1 shows the relationships among the major entities in the information
model. The figure is presented by EXPRESS-G1 [1], a graphical subset of the EXPRESS language. The

1 EXPRESS-G is represented by graphic symbols forming a diagram. The definitions of data types and schemas within a diagram
are denoted by boxes which enclose the name of the item being defined. The relationships between the items are denoted by the
lines joining the boxes. Differing line styles provide information on the kind of definition or relationships. For example, a

4

TESTS entity is a list of TEST entities, each describing the properties and results of a performance test.
The TEST entity contains the MACHINE entity identifying the tested machine. This is achieved by either a
unique ID or a set of properties: manufacturer, model, and serial number. The use of a unique ID as an
alternative to a set of properties is repeated for several other entities that contain related data.

Most of the parameters that describe the design of a test are contained in three entities: CONDITIONS,
EQUIPMENT, and SETUP. The CONDITIONS entity describes the status of the machine and its
environment during the test. The respective parameters apply to most tests. The content of the
EQUIPMENT and SETUP entities varies depending on the type of test. The EQUIPMENT entity
describes the properties and (factory) settings of a kit of instruments and artifacts assembled for a specific
type of test. The entity usually does not change once such a kit has been defined. The SETUP entity
contains parameters that describe the tested machine property, the set-up, and the measurement
procedure. The parameter values usually vary unless a test is repeated. The majority of the information
contained in the SETUP entity is not dependent on the content of the EQUIPMENT entity.

The results of a test are contained in two entities: RUN_DATA and RESULT. RUN_DATA contains the
measurement data of an individual run. A run is a specific motion pattern of the machine during which
errors are measured. A performance test usually consists of several runs that can only differ in the
approach direction to the target points. A RESULT entity contains performance parameters that are
estimated from the data obtained in one or more runs. A test can have multiple RESULT entities that differ
in the applicable approach direction or the standard/guideline in which the calculated performance
parameters are defined.

The use of a particular system of measurement units is site-specific. However, use of mixed units will
complicate the exchange and storage of data. Therefore, the units of measurement values used in this
information model are predefined [2]. It is assumed that the application software will make the desired
conversions to and from these units.

relationship for an optional attribute of an entity data type is presented as a dashed line. An inheritance relationship (i.e., a
subtype and supertype relationship) is presented as a thick line.

5

6

2.2 EXPRESS Information Model

This subsection describes the detailed information for the schema of machine-tool-performance tests. The
schema name is MACHINE_TOOL_PERFORMANCE_TESTS. An EXPRESS schema is composed of
declarations of types, entities, constraints, and their relationships. The concept of a type in EXPRESS is
the same as that of a data type in a standard programming language. It defines the kind of values that an
object may assume. Entities are the focal point of an EXPRESS information model. An entity declaration
describes the information content of an object, as well as some of the constraints on the objects.

In EXPRESS language, a “remark” is used for documentation and is not significant as a language element.
The character pair, “(” and “*”, is used to denote the start of an embedded remark, and the character pair,
“*” and “)”, is used to denote its end. An embedded remark may appear between any two tokens. In this
report, the documentation is presented as embedded remarks. Consequently, this entire report can be read
into an EXPRESS parser for further analysis.

*)

SCHEMA MACHINE_TOOL_PERFORMANCE_TESTS;

(*

2.2.1 Entity Definitions

The entities are formally defined in this subsection. The entities presented here are in the “top-down”
order, i.e., primitive type definitions are presented last.

*)

ENTITY TESTS_DEF;
TESTS: LIST [1:?] OF UNIQUE TEST_DEF;

END_ENTITY;

ENTITY TEST_DEF;
ID: OPTIONAL STRING;
TEST_CLASS: TEST_CLASS_DEF;
DATE: DATE_DEF;
TIME: OPTIONAL TIME_DEF;
WHY: OPTIONAL WHY_DEF;
MACHINE: MACHINE_DEF;
CONDITIONS: OPTIONAL CONDITIONS_DEF;
OPERATOR: OPTIONAL STRING;
STANDARD: OPTIONAL STANDARD_DEF;
EQUIPMENT: EQUIPMENT_DEF;
SETUP: SETUP_DEF;
RUN_DATA: OPTIONAL LIST [1:?] OF RUN_DATA_DEF;
RESULT: OPTIONAL LIST [1:?] OF RESULT_DEF;
COMMENT: OPTIONAL TEXT;

END_ENTITY;

7

ENTITY DATE_DEF;
YYYY: INTEGER;
MM: INTEGER;
DD: INTEGER;

WHERE
WR1: (YYYY >= 1900);

 WR2: (1 <= MM) AND (MM <= 12);
WR3: (1 <= DD) AND (DD <= 31);

END_ENTITY;

ENTITY TIME_DEF;
HH: INTEGER;
MM: INTEGER;
SS: INTEGER;

WHERE
WR1: (0 <= HH) AND (HH <= 24);

 WR2: (0 <= MM) AND (MM <= 59);
WR3: (0 <= SS) AND (SS <= 59);
WR4: ((HH = 24) AND ((MM = 0) AND (SS = 0)));

END_ENTITY;

ENTITY MACHINE_DEF;
ID : OPTIONAL STRING;
MANUFACTURER: STRING;
MACHINE_MODEL: STRING;
SERIAL_NUMBER : STRING;
LOCATION: OPTIONAL STRING;

END_ENTITY;

ENTITY CONDITIONS_DEF;
CLAMPED_AXES: OPTIONAL LIST [1:?] OF AXIS_DEF;

 COMPENSATION: OPTIONAL BOOLEAN;
COMPENSATION_ID: OPTIONAL STRING;
COOLANT: OPTIONAL BOOLEAN;
DRIVE_STATUS: OPTIONAL DRIVE_STATUS_DEF;
TEMP_ENVIRONMENT: OPTIONAL REAL;
WARMUP: OPTIONAL BOOLEAN;
WARMUP_DESCRIPTION: OPTIONAL STRING;

END_ENTITY;

ENTITY STANDARD_DEF;
ORGANIZATION: STRING;
STANDARD_NUMBER: STRING;
NAME: OPTIONAL STRING;
YEAR: INTEGER;
TEST_NAME: OPTIONAL STRING;
SECTION_NUMBER: OPTIONAL STRING;
SECTION_NAME: OPTIONAL STRING;
STATUS: OPTIONAL STANDARD_STATUS_DEF;

WHERE

8

WR1: (YEAR > 1900);
END_ENTITY;

ENTITY EQUIPMENT_DEF
SUPERTYPE OF (ONEOF (EQUIPMENT_CIRCULAR_DEF,

EQUIPMENT_LINE_DEF,
EQUIPMENT_POINT_DEF,
EQUIPMENT_COMPLIANCE_DEF));

ID: OPTIONAL STRING;
COMPONENT: OPTIONAL LIST [1:?] OF COMPONENT_DEF;
SOFTWARE: OPTIONAL SOFTWARE_DEF;
RESOLUTION: OPTIONAL REAL;
SAMPLE_RATE_RAW: OPTIONAL REAL;

END_ENTITY;

ENTITY COMPONENT_DEF;
ID: OPTIONAL STRING;
DESCRIPTION: OPTIONAL STRING;
MANUFACTURER: STRING;
COMPONENT_MODEL: STRING;
SERIAL_NUMBER : STRING;
CALIBRATION_DATE: OPTIONAL DATE_DEF;
CALIBRATION_EXP_DATE: OPTIONAL DATE_DEF;
CERTIFICATE_NUMBER: OPTIONAL STRING;
CALIBRATION_ORGANIZATION: OPTIONAL STRING;

END_ENTITY;

ENTITY SOFTWARE_DEF;
ID: OPTIONAL STRING;
MANUFACTURER: STRING;
NAME: STRING;
VERSION_NUMBER: STRING;

END_ENTITY;

ENTITY SETUP_DEF
SUPERTYPE OF (ONEOF (SETUP_CIRCULAR_DEF,

SETUP_LINE_DEF,
SETUP_POINT_DEF,
SETUP_COMPLIANCE_DEF));

END_ENTITY;

ENTITY RUN_DATA_DEF
SUPERTYPE OF (ONEOF (RUN_DATA_CIRCULAR_DEF,

RUN_DATA_LINE_DEF,
RUN_DATA_POINT_DEF,
RUN_DATA_COMPLIANCE_DEF));

END_ENTITY;

ENTITY RESULT_DEF;
STANDARD: STANDARD_DEF;

9

MEASURAND: OPTIONAL MEASURAND_POINT_DEF;
PARAMETER: LIST [1:?] OF PARAMETER_DEF;

END_ENTITY;

ENTITY PARAMETER_DEF;
NAME: STRING;
VAL: REAL;
APPROACH_DIRECTION: OPTIONAL APPROACH_DIRECTION_DEF;

END_ENTITY;

ENTITY EQUIPMENT_CIRCULAR_DEF
SUPERTYPE OF (ONEOF(BALL_BAR_DEF,

DISK_DEF,
GRID_ENCODER_DEF))

SUBTYPE OF (EQUIPMENT_DEF);
EQUIPMENT_CLASS: EQUIPMENT_CLASS_CIRCULAR_DEF;
ABSOLUTE: BOOLEAN;

 FILTER_LS_CENTER: BOOLEAN;
FILTER_LS_RADIUS: BOOLEAN;
TEMP_REFERENCE_COMP: BOOLEAN;
TEMP_REFERENCE_SENSOR: OPTIONAL LIST [1:?] OF TEMP_SENSOR_DEF;
TEMP_REFERENCE_COEFFICIENT: REAL;

END_ENTITY;

ENTITY BALL_BAR_DEF
SUBTYPE OF (EQUIPMENT_CIRCULAR_DEF);

CALIBRATOR: OPTIONAL BOOLEAN;
END_ENTITY;

ENTITY DISK_DEF
SUBTYPE OF (EQUIPMENT_CIRCULAR_DEF);

MACHINE_PROBE: BOOLEAN;
INNER_CIRCLE: OPTIONAL BOOLEAN;

END_ENTITY;

ENTITY GRID_ENCODER_DEF
SUBTYPE OF (EQUIPMENT_CIRCULAR_DEF);

END_ENTITY;

ENTITY SETUP_CIRCULAR_DEF
SUPERTYPE OF (ONEOF(SETUP_CIRCULAR_STATIC_DEF,

SETUP_CIRCULAR_DYNAMIC_DEF))
SUBTYPE OF (SETUP_DEF);

ID: OPTIONAL STRING;
MEAS_MODE: MEAS_MODE_DEF;
PLANE: PLANE_DEF;
ROTARY_AXIS: OPTIONAL AXIS_DEF;
CENTER: MACHINE_POSITION_DEF;
TOOL_VECTOR: TOOL_VECTOR_DEF;
SPINDLE_NUMBER: OPTIONAL INTEGER;

10

TURRET_NUMBER: OPTIONAL INTEGER;
RADIUS_MACHINE: REAL;
RADIUS_REFERENCE: REAL;
INCLINATION: REAL;
FEEDRATE: REAL;
OVERSHOOT: OPTIONAL REAL;
TEMP_MATERIAL_COMP: BOOLEAN;
TEMP_MATERIAL_SENSOR: OPTIONAL LIST [1:?] OF TEMP_SENSOR_DEF;
TEMP_MATERIAL_COEFFICIENT: OPTIONAL REAL;
SAMPLES_AVERAGED: OPTIONAL INTEGER;
POINT_MODE: POINT_MODE_CIRCULAR_DEF;
INTERPOLATION: OPTIONAL INTERPOLATION_DEF;
NC_PROGRAM_ID: OPTIONAL STRING;
ALIGNMENT_METHOD: OPTIONAL ALIGNMENT_METHOD_DEF;
ALIGNMENT_WHEN: OPTIONAL ALIGNMENT_WHEN_DEF;
DATUM_WHEN: OPTIONAL DATUM_WHEN_DEF;
PREVIOUS_TEST_ID: OPTIONAL STRING;

WHERE
WR1: (TEMP_MATERIAL_COMP) AND (EXISTS(TEMP_MATERIAL_COEFFICIENT));

END_ENTITY;

ENTITY PLANE_DEF;
X: AXIS_DEF;
Y: AXIS_DEF;

END_ENTITY;

ENTITY SETUP_CIRCULAR_STATIC_DEF
SUBTYPE OF (SETUP_CIRCULAR_DEF);

SETUP_STATIC: SETUP_STATIC_DEF;
APPROACH_MODE: APPROACH_MODE_CIRCULAR_DEF;

END_ENTITY;

ENTITY SETUP_CIRCULAR_DYNAMIC_DEF
SUBTYPE OF (SETUP_CIRCULAR_DEF);

SETUP_DYNAMIC: SETUP_DYNAMIC_DEF;
CAM_SOFTWARE: OPTIONAL SOFTWARE_DEF;
NC_CIRCULARITY: OPTIONAL REAL;

END_ENTITY;

ENTITY RUN_DATA_CIRCULAR_DEF
SUBTYPE OF (RUN_DATA_DEF);

APPROACH_DIRECTION: APPROACH_DIRECTION_DEF;
LS_CENTER_OFFSET_X: OPTIONAL REAL;
LS_CENTER_OFFSET_Y: OPTIONAL REAL;
LS_RADIUS_ERROR: OPTIONAL REAL;
TEMP_REFERENCE: OPTIONAL LIST [1:?] OF TEMP_DATA_DEF;
TEMP_MATERIAL: OPTIONAL LIST [1:?] OF TEMP_DATA_DEF;
POINTS: LIST[1:?] OF REAL;

WHERE
WR1: ((EQUIPMENT_CIRCULAR_DEF.FILTER_LS_CENTER) AND

11

(EXISTS (LS_CENTER_OFFSET_X) AND
 EXISTS (LS_CENTER_OFFSET_Y)));

WR2: ((EQUIPMENT_CIRCULAR_DEF.FILTER_LS_RADIUS) AND
(EXISTS (LS_RADIUS_ERROR)));

END_ENTITY;

ENTITY EQUIPMENT_LINE_DEF
SUBTYPE OF (EQUIPMENT_DEF);

EQUIPMENT_CLASS: EQUIPMENT_CLASS_LINE_DEF;
FILTER_LS_SLOPE: OPTIONAL BOOLEAN;
FILTER_LS_CENTER: OPTIONAL BOOLEAN;
FILTER_OFFSET: BOOLEAN;
TEMP_REFERENCE_COMP: OPTIONAL BOOLEAN;
TEMP_REFERENCE_COEFFICIENT: OPTIONAL REAL;
TEMP_REFERENCE_SENSOR: OPTIONAL LIST [1:?] OF TEMP_SENSOR_DEF;
LASER_INTERFEROMETER: OPTIONAL LASER_INTERFEROMETER_DEF;
TARGET_SHAPE: OPTIONAL TARGET_SHAPE_DEF;
TARGET_DIAMETER: OPTIONAL REAL;

END_ENTITY;

ENTITY LASER_INTERFEROMETER_DEF;
AIR_HUMIDITY_COMP: OPTIONAL BOOLEAN;
AIR_PRESSURE_COMP: OPTIONAL BOOLEAN;
DEADPATH_COMP: OPTIONAL BOOLEAN;
VOL_COMP_METHOD: OPTIONAL VOL_COMP_METHOD_DEF;

END_ENTITY;

ENTITY SETUP_LINE_DEF
SUPERTYPE OF (ONEOF (SETUP_LINE_STATIC_DEF,

 SETUP_LINE_DYNAMIC_DEF))
SUBTYPE OF (SETUP_DEF);

ID: OPTIONAL STRING;
 MEAS_MODE: MEAS_MODE_DEF;

MEASURAND: MEASURAND_LINE_DEF;
MEAS_METHOD: MEAS_METHOD_DEF;
AXIS: OPTIONAL AXIS_DEF;
SENSITIVE_DIRECTION: OPTIONAL SENSITIVE_DIRECTION_DEF;
START_POINT: MACHINE_POSITION_DEF;
END_POINT: OPTIONAL MACHINE_POSITION_DEF;
TOOL_VECTOR: TOOL_VECTOR_DEF;
SPINDLE_NUMBER: OPTIONAL INTEGER;
TURRET_NUMBER: OPTIONAL INTEGER;
FEEDRATE: REAL;
DEADPATH: OPTIONAL REAL;
OVERSHOOT: OPTIONAL REAL;
WARMUP_MOVES: OPTIONAL INTEGER;
WARMUP_RUNS: OPTIONAL INTEGER;
TEMP_MATERIAL_COMP: OPTIONAL BOOLEAN;
TEMP_MATERIAL_SENSOR: OPTIONAL LIST [1:?] OF TEMP_SENSOR_DEF;
TEMP_MATERIAL_COEFFICIENT: OPTIONAL REAL;

12

TEMP_ADDITIONAL_SENSOR: OPTIONAL LIST [1:?] OF TEMP_SENSOR_DEF;
SAMPLES_AVERAGED: OPTIONAL INTEGER;
ALIGNMENT: OPTIONAL ALIGNMENT_DEF;
DIFFERENTIAL_MEAS_DIR : OPTIONAL DIFFERENTIAL_MEAS_DIR_DEF;
SENSOR_OFFSET : OPTIONAL REAL;
REVERSAL: OPTIONAL BOOLEAN;

WHERE
WR1: (((TEST_DEF.TEST_CLASS =

TEST_CLASS_DEF.DIAGONAL_ACCELERATION) OR
 (TEST_DEF.TEST_CLASS = TEST_CLASS_DEF.DIAGONAL_ANGULAR) OR
 (TEST_DEF.TEST_CLASS = TEST_CLASS_DEF.DIAGONAL_POSITION) OR
 (TEST_DEF.TEST_CLASS = TEST_CLASS_DEF.DIAGONAL_STRAIGHT) OR
 (TEST_DEF.TEST_CLASS = TEST_CLASS_DEF.DIAGONAL_VELOCITY))

AND
 (EXISTS(END_POINT)));

WR2: (((TEST_DEF.TEST_CLASS =
TEST_CLASS_DEF.DIAGONAL_POSITION) OR

(TEST_DEF.TEST_CLASS =
TEST_CLASS_DEF.AXIS_POSITION) OR

(TEST_DEF.TEST_CLASS =
TEST_CLASS_DEF.AXIS_REPEAT) OR

(TEST_DEF.TEST_CLASS =
TEST_CLASS_DEF.AXIS_REVERSAL) OR

(TEST_DEF.TEST_CLASS =
TEST_CLASS_DEF.AXIS_PERIODIC) OR

(TEST_DEF.TEST_CLASS =
TEST_CLASS_DEF.THERMAL_AXIS)) AND

(EXISTS(TEMP_MATERIAL_COMP)));
WR3: ((TEMP_MATERIAL_COMP) AND

((EXISTS(TEMP_MATERIAL_SENSOR) AND
 EXISTS(TEMP_MATERIAL_COEFFICIENT))));

WR4: ((MEAS_METHOD = MEAS_METHOD_DEF.DIFFERENTIAL) AND
(EXISTS(DIFFERENTIAL_MEAS_DIR)));

END_ENTITY;

ENTITY SETUP_LINE_STATIC_DEF
SUBTYPE OF (SETUP_LINE_DEF);

SETUP_STATIC: SETUP_STATIC_DEF;
END_ENTITY;

ENTITY SETUP_LINE_DYNAMIC_DEF
SUBTYPE OF (SETUP_LINE_DEF);

SETUP_DYNAMIC: SETUP_DYNAMIC_DEF;
END_ENTITY;

ENTITY ALIGNMENT_DEF;
AXIS_SECOND: AXIS_DEF;
TARGETS_SECOND: OPTIONAL LIST[1:?] OF REAL;
TARGET_START_SECOND: OPTIONAL REAL;
TARGET_END_SECOND: OPTIONAL REAL;

13

MACHINING_TIME: OPTIONAL REAL;
SOAK_OUT_TIME: OPTIONAL REAL;

WHERE
WR1: (((SETUP_LINE_DEF.MEAS_MODE = MEAS_MODE_DEF.STATIC) AND

 (SETUP_LINE_DEF.MEAS_METHOD = MEAS_METHOD_DEF.SQUARE)) AND
(EXISTS (TARGETS_SECOND)));

WR2: (((SETUP_LINE_DEF.MEAS_MODE = MEAS_MODE_DEF.DYNAMIC) AND
 (SETUP_LINE_DEF.MEAS_METHOD = MEAS_METHOD_DEF.SQUARE)) AND
(EXISTS (TARGET_START_SECOND) AND EXISTS (TARGET_END_SECOND)));

WR3: (((SETUP_LINE_DEF.MEAS_METHOD = MEAS_METHOD_DEF.PAST_CENTER)
OR

 (SETUP_LINE_DEF.MEAS_METHOD = MEAS_METHOD_DEF.REVERSE_PART))
AND

(EXISTS (MACHINING_TIME) AND EXISTS (SOAK_OUT_TIME)));
END_ENTITY;

ENTITY RUN_DATA_LINE_DEF
SUBTYPE OF (RUN_DATA_DEF);

APPROACH_DIRECTION: APPROACH_DIRECTION_DEF;
LEG: OPTIONAL LEG_DEF;
LS_OFFSET: OPTIONAL REAL;
LS_CENTER_OFFSET_X: OPTIONAL REAL;
LS_CENTER_OFFSET_Y: OPTIONAL REAL;
LS_SLOPE: OPTIONAL REAL;
TEMP_REFERENCE: OPTIONAL LIST [1:?] OF TEMP_DATA_DEF;
TEMP_MATERIAL: OPTIONAL LIST [1:?] OF TEMP_DATA_DEF;
TEMP_ADDITIONAL: OPTIONAL LIST [1:?] OF TEMP_DATA_DEF;
AIR_HUMIDITY: OPTIONAL LIST [1:?] OF REAL;
AIR_PRESSURE: OPTIONAL LIST [1:?] OF REAL;
ELAPSED_TIME: OPTIONAL REAL;
POINTS: OPTIONAL LIST[1:?] OF REAL;

WHERE
WR1: ((EQUIPMENT_LINE_DEF.FILTER_OFFSET) AND EXISTS(LS_OFFSET));
WR2: ((EQUIPMENT_LINE_DEF.FILTER_LS_CENTER) AND

(EXISTS(LS_CENTER_OFFSET_X) AND EXISTS(LS_CENTER_OFFSET_Y)));
WR3: ((EQUIPMENT_LINE_DEF.FILTER_LS_SLOPE) AND EXISTS(LS_SLOPE));
WR4: (((EQUIPMENT_LINE_DEF.EQUIPMENT_CLASS =

EQUIPMENT_CLASS_LINE_DEF.LASER_INTERFEROMETER) OR
 (EQUIPMENT_LINE_DEF.EQUIPMENT_CLASS =

EQUIPMENT_CLASS_LINE_DEF.ND_LASER)) AND
(EXISTS(AIR_HUMIDITY)) AND (EXISTS(AIR_PRESSURE)));

END_ENTITY;

ENTITY EQUIPMENT_POINT_DEF
SUBTYPE OF (EQUIPMENT_DEF);

EQUIPMENT_CLASS: OPTIONAL EQUIPMENT_CLASS_POINT_DEF;
CUT_OFF: OPTIONAL REAL;
SYNCHRONIZATION: OPTIONAL SYNCHRONIZATION_DEF;
TEMP_REFERENCE_COEFFICIENT: OPTIONAL REAL;
FILTER_LS_CENTER: OPTIONAL BOOLEAN;

14

TARGET_SHAPE : OPTIONAL TARGET_SHAPE_DEF;
 TARGET_DIAMETER : OPTIONAL REAL;

DUAL_SENSOR : OPTIONAL BOOLEAN;
END_ENTITY;

ENTITY SETUP_POINT_DEF
SUBTYPE OF (SETUP_DEF);

ID: OPTIONAL STRING;
MEAS_MODE: OPTIONAL MEAS_MODE_DEF;
MEASURAND: LIST [1:?] OF MEASURAND_POINT_DEF;
SENSOR_OFFSET: OPTIONAL REAL;
MACHINE_POSITION: MACHINE_POSITION_DEF;
TOOL_VECTOR: TOOL_VECTOR_DEF;
SPINDLE_NUMBER: OPTIONAL INTEGER;
TURRET_NUMBER: OPTIONAL INTEGER;
TEMP_ADDITIONAL_SENSOR: OPTIONAL LIST [1:?] OF TEMP_SENSOR_DEF;
SAMPLE_RATE: REAL;
SAMPLES_AVERAGED: OPTIONAL INTEGER;
SENSITIVE_DIRECTION: OPTIONAL SENSITIVE_DIRECTION_DEF;
NUMBER_OF_REVOLUTIONS: OPTIONAL INTEGER;
AXIS: OPTIONAL AXIS_DEF;
SPINDLE_SPEED: OPTIONAL LIST[1:?] OF REAL;
DURATION: OPTIONAL LIST[1:?] OF REAL;
TOOL_LENGTH_LONG: OPTIONAL REAL;
FEEDRATE: OPTIONAL REAL;
APPROACH_POINT: OPTIONAL MACHINE_POSITION_DEF;
SETUP_STATIC: OPTIONAL SETUP_STATIC_DEF;

END_ENTITY;

ENTITY RUN_DATA_POINT_DEF
SUBTYPE OF (RUN_DATA_DEF);

TEMP_ADDITIONAL: OPTIONAL LIST [1:?] OF TEMP_DATA_DEF;
LS_CENTER_OFFSET_X: OPTIONAL REAL;
LS_CENTER_OFFSET_Y: OPTIONAL REAL;
POINTS: LIST[1:?] OF REAL;

 WHERE
WR1: ((EQUIPMENT_POINT_DEF.FILTER_LS_CENTER) AND

(EXISTS(LS_CENTER_OFFSET_X) AND EXISTS (LS_CENTER_OFFSET_Y)));
END_ENTITY;

ENTITY EQUIPMENT_COMPLIANCE_DEF
SUBTYPE OF (EQUIPMENT_DEF);

EQUIPMENT_CLASS: OPTIONAL EQUIPMENT_CLASS_COMPLIANCE_DEF;
LOAD_MEASUREMENT: OPTIONAL LOAD_MEASUREMENT_DEF;
LOAD_RESOLUTION: OPTIONAL REAL;

END_ENTITY;

ENTITY SETUP_COMPLIANCE_DEF
SUBTYPE OF (SETUP_DEF);

ID: OPTIONAL STRING;

15

AXIS: AXIS_DEF;
EXTERNAL_LOAD: BOOLEAN;
AXIS_LOAD: OPTIONAL AXIS_DEF;
MEAS_DIR: OPTIONAL MEAS_DIR_DEF;
RADIUS: OPTIONAL REAL;
MACHINE_POSITION: MACHINE_POSITION_DEF;
TOOL_VECTOR: TOOL_VECTOR_DEF;
SPINDLE_NUMBER: OPTIONAL INTEGER;
TURRET_NUMBER: OPTIONAL INTEGER;
SAMPLES_AVERAGED : OPTIONAL INTEGER;

END_ENTITY;

ENTITY RUN_DATA_COMPLIANCE_DEF
SUBTYPE OF (RUN_DATA_DEF);

POINTS: LIST[1:?] OF REAL;
END_ENTITY;

ENTITY AXIS_POSITION_DEF;
AXIS: AXIS_DEF;
POSITION: REAL;

END_ENTITY;

ENTITY MACHINE_POSITION_DEF;
POSITIONS: LIST [1:?] OF AXIS_POSITION_DEF;

END_ENTITY;

ENTITY SETUP_DYNAMIC_DEF;
TARGET_START: REAL;
TARGET_END: REAL;
TRIGGER_MODE: OPTIONAL TRIGGER_MODE_DEF;
SAMPLE_RATE: OPTIONAL REAL;
INFEED_MODE: OPTIONAL INFEED_MODE_DEF;
INFEED_DISTANCE: OPTIONAL REAL;
INFEED_RADIUS: OPTIONAL REAL;
INFEED_ANGLE: OPTIONAL REAL;

WHERE
WR1: ((INFEED_MODE = INFEED_MODE_DEF.LINEAR) AND

(EXISTS (INFEED_DISTANCE)));
WR2: ((INFEED_MODE = INFEED_MODE_DEF.CIRCULAR) AND

(EXISTS (INFEED_RADIUS) AND EXISTS (INFEED_ANGLE)));
END_ENTITY;

ENTITY SETUP_STATIC_DEF;
TARGETS: OPTIONAL LIST [1:?] OF REAL;
REPETITIONS: OPTIONAL INTEGER;
TRIGGER_MODE: OPTIONAL TRIGGER_MODE_DEF;
TRIGGER_DWELL:OPTIONAL REAL;
TRIGGER_WIDTH: OPTIONAL REAL;
TRIGGER_STABILITY: OPTIONAL REAL;

END_ENTITY;

16

ENTITY TEMP_SENSOR_DEF;
NAME: OPTIONAL STRING;
LOCATION: STRING;
CHANNEL: OPTIONAL STRING;
SERIAL_NUMBER: OPTIONAL STRING;

END_ENTITY;

ENTITY TEMP_DATA_DEF;
NAME: OPTIONAL STRING;
DATA: LIST [1:?] OF REAL;

END_ENTITY;

ENTITY TOOL_VECTOR_DEF;
X: OPTIONAL REAL;
Y: OPTIONAL REAL;
Z: REAL;

END_ENTITY;

END_SCHEMA; -- END MACHINE_TOOL_PERFORMANCE_TESTS

(*

2.2.2 Type Definitions
The types are formally defined in this subsection and they are presented in the alphabetical order.

*)

TYPE ALIGNMENT_METHOD_DEF = ENUMERATION OF
(NO_ALIGN, KINEMATIC, QUADRANT, PROBE, GRID_ENCODER_ZERO);

END_TYPE;

TYPE ALIGNMENT_WHEN_DEF = ENUMERATION OF
(PREVIOUS, FIRST_RUN, EACH_RUN);

END_TYPE;

TYPE APPROACH_DIRECTION_DEF = ENUMERATION OF
(POSITIVE, NEGATIVE, BIDIRECTIONAL, PILGRIM_POSITIVE,

 PILGRIM_NEGATIVE);
END_TYPE;

TYPE APPROACH_MODE_CIRCULAR_DEF = ENUMERATION OF
(AXIS, TANGENT, RADIAL);

END_TYPE;

TYPE AXIS_DEF= STRING;
END_TYPE;

TYPE DATUM_WHEN_DEF = ENUMERATION OF
(PREVIOUS, FIRST_RUN, EACH_RUN);

17

END_TYPE;

TYPE DIFFERENTIAL_MEAS_DIR_DEF = ENUMERATION OF
(X, Y, Z);

END_TYPE;

TYPE DRIVE_STATUS_DEF = ENUMERATION OF
(OFF, HOLD, PROG);

END_TYPE;

TYPE EQUIPMENT_CLASS_COMPLIANCE_DEF = ENUMERATION OF
(AUTOCOLLIMATOR, CAPACITANCE, INDUCTIVE, LASER_INTERFEROMETER,
 LEVELS, LVDT, MECHANICAL, ND_LASER, SCALE, TRIANGULATION);

END_TYPE;

TYPE EQUIPMENT_CLASS_CIRCULAR_DEF = ENUMERATION OF
(BALL_BAR, DISK, GRID_ENCODER);

END_TYPE;

TYPE EQUIPMENT_CLASS_LINE_DEF = ENUMERATION OF
(ALIGNMENTLASER, AUTOCOLLIMATOR, DISPLACEMENT,
 INDEXING_AUTOCOLLIMATOR, INDEXING_LEVELS,
 INDEXING_LASER_INTERFEROMETER, INDEXING_DISPLACEMENT,
 LASER_BALL_BAR, LASER_INTERFEROMETER, LEVELS, MANDREL,
 ND_LASER, POLYGON_AUTOCOLLIMATOR,
 POLYGON_LASER_INTERFEROMETER, POLYGON_ND_LASER,
 ROTARY_ENCODER, SCALE, STRAIGHTEDGE, WIRE);

END_TYPE;

TYPE EQUIPMENT_CLASS_POINT_DEF = ENUMERATION OF
(INDUCTIVE, CAPACITANCE, LASER_INTERFEROMETER, LVDT, MECHANICAL,
 SCALE, TRIANGULATION);

END_TYPE;

TYPE INFEED_MODE_DEF= ENUMERATION OF
(CIRCULAR, LINEAR, NONE);

END_TYPE;

TYPE INTERPOLATION_DEF = ENUMERATION OF
(CIRCULAR, LINEAR);

END_TYPE;

TYPE LEG_DEF = ENUMERATION OF
(FIRST, SECOND);

END_TYPE;

TYPE LOAD_MEASUREMENT_DEF = ENUMERATION OF
(FORCE, MOMENT);

END_TYPE;

18

TYPE MEAS_DIR_DEF = ENUMERATION OF
(X, Y, Z, A, B, C);

END_TYPE;

TYPE MEAS_METHOD_DEF = ENUMERATION OF
(DIFFERENTIAL, DIRECT, REVERSE, SQUARE, PAST_CENTER,
 REVERSE_PART, TWO_CIRCLE);

END_TYPE;

TYPE MEAS_MODE_DEF = ENUMERATION OF
(STATIC, DYNAMIC);

END_TYPE;

TYPE MEASURAND_LINE_DEF = ENUMERATION OF
(A, B, C, X, Y, Z, RA, RR, RT, DV, DA);

END_TYPE;

TYPE MEASURAND_POINT_DEF = ENUMERATION OF
(X, Y, Z, XS, YS, ZS, A, B, C, RR, RA, RT);

END_TYPE;

TYPE POINT_MODE_CIRCULAR_DEF= ENUMERATION OF
(R, AR, XY);

END_TYPE;

TYPE SENSITIVE_DIRECTION_DEF = ENUMERATION OF
(FIXED_DIR, ROTATING);

END_TYPE;

TYPE STANDARD_STATUS_DEF = ENUMERATION OF
(DRAFT, FINAL);

END_TYPE;

TYPE SYNCHRONIZATION_DEF = ENUMERATION OF
(ECCENTRICITY, MARKER, MACHINE, NONE);

END_TYPE;

TYPE TARGET_SHAPE_DEF = ENUMERATION OF
(SPHERE, CYLINDER);

END_TYPE;

TYPE TEST_CLASS_DEF = ENUMERATION OF
(AXIS_ACCELERATION, AXIS_ANGULAR, AXIS_PERIODIC, AXIS_POSITION,
 AXIS_REPEAT, AXIS_REVERSAL, AXIS_STRAIGHT, AXIS_VELOCITY,
 CIRCULAR, COMPLIANCE, DIAGONAL_ACCELERATION, DIAGONAL_ANGULAR,
 DIAGONAL_POSITION, DIAGONAL_STRAIGHT, DIAGONAL_VELOCITY,
 PARALLELISM, SPINDLE, SQUARENESS, STRUCTURAL, SUBSYSTEM_GAGE,
 SUBSYSTEM_PALLET, SUBSYSTEM_TOOL, SUBSYSTEM_TURRET,
 THERMAL_AXIS, THERMAL_COMPOSITE, THERMAL_ETVE,
 THERMAL_SPRINDLE);

19

END_TYPE;

TYPE TEXT = STRING;
END_TYPE;

TYPE TRIGGER_MODE_DEF = ENUMERATION OF
(INFEED, MACHINE, MANUAL, STABILITY, TARGET, TARGET_STABILITY, TIME);

END_TYPE;

TYPE VOL_COMP_METHOD_DEF = ENUMERATION OF
(MANUAL, SENSOR, TRACKER);

END_TYPE;

TYPE WHY_DEF = ENUMERATION OF
(ACCEPTANCE, COLLISION, MAINTENANCE, MOVE, PERIODIC);

END_TYPE;

(*

3. Implementation Samples
The example shown in this section is for a dynamic, circular test in the XY-plane of a milling machine. The
measurements are performed with a ball bar. The programmed circle consists of line segments (an option
mentioned in Appendix E8.2 of the ASME B5.57 standard on turning centers [4]). A calibrator is used to
determine the absolute length of the ball bar.

Three implementation samples on the EXPRESS model are presented for the same data. Subsection 3.1
demonstrates the implementation using the ISO 10303-21 Exchange Structure [9]. Subsection 3.2
demonstrates an XML (the Extensible Markup Language) [10] implementation. Subsection 3.3
demonstrates the implementation using a relational database. All samples have been generated manually.

3.1 ISO 10303 Part 21 Exchange Structure

ISO 10303-21 specifies an exchange structure of product data for which the conceptual model is specified
in the EXPRESS language. The file format is suitable for transfer among computer systems. The
exchange structure is designed to facilitate parsing by software.

The following is a sample of an exchange structure based on the ISO 10303-21, Clear Text Encoding Of
the Exchange Structure [9]. Each Part 21 file format may be considered a continuous stream. This
exchange structure consists of two sections: the header section and the data section. The header section
contains information that is applicable to the entire exchange file. The data section contains instances of
entities that correspond to the EXPRESS schema governing the exchange structure as specified in the
header section. An entity instance name is identified by a number sign (#), followed by a unique entity
name, which is an unsigned integer of 1 or more digits. When a value is not provided for an optional
attribute, the attribute value is encoded as the dollar sign ($). Both forward and backward references are
permitted. A comment is encoded as a solidus asterisk (/*) followed by any number of characters, and
terminated by an asterisk solidus (*/).

/*

20

The exchange file is generated based on the ISO 10303-21: 1994(E).
The file has been presented in a line-oriented or record-oriented manner in order to aid
readability.
Unnecessary spaces have been added to aid readability.
Note that an ordinary Part 21 file is not aligned in this manner, but instead a
continuous stream of characters.
*/

/*
The following gives the short names for the schema of MACHINE_TOOL_PERFORMANCE_TESTS.

Entity name Short name

BALL_BAR_DEF BALL_BAR
COMPONENT_DEF COMPONENT
CONDITIONS_DEF CONDITIONS
DATE_DEF DATE
MACHINE_DEF MACHINE
PLANE_DEF PLANE
MACHINE_POSITION_DEF MACHINE_POSITION
RESULT_DEF RESULT
RUN_DATA_CIRCULAR_DEF RUN_DATA_CIRCULAR
SETUP_CIRCULAR_DYNAMIC_DEF SETUP_CIRCULAR_DYNAMIC
SETUP_DYNAMIC_DEF SETUP_DYNAMIC
SOFTWARE_DEF SOFTWARE
STANDARD_DEF STANDARD
TEMP_SENSOR_DEF TEMP_SENSOR
TEST_DEF TEST
TIME_DEF TIME
TOOL_VECTOR_DEF TOOL_VECTOR
*/

ISO-10303-21;
HEADER;
FILE_DESCRIPTION ((‘THIS FILE CONTAINS A SAMPLE CIRCULAR TEST’),
‘2’);
FILE_NAME (‘EXAMPLE PART 21 FILE #1’,
‘2000-07-17T17:30:00’,
(‘TINA LEE’,’NIST’,’MS8260’,’Gaithersburg, MD 20899-8260’),
(‘NIST/MEL/MSG’),
‘PREPROCESSOR_VERSION NONE’,
‘ORIGINATING SYSTEM RELEASE 1.0’,
‘APPROVED BY TINA LEE’);
FILE_SCHEMA ((‘MACHINE_TOOL_PERFORMANCE_TESTS’));
ENDSEC;
DATA;
#1=DATE(1999,6,22);
#2=TIME(10, 6, 0);
#3=MACHINE(‘2434’,’XYZ’,’ABC’,’123’,’SHOPS’);
#4=CONDITIONS($,.T.,$,$,$,22.5,$,$);
#5=STANDARD(‘ASME’,’B5.57’,$,1997,$,$,$,$);
#6=COMPONENT($,’BALL_BAR’,’XYZ’,’ABC1’,’123’,$,$,$,$);
#7=COMPONENT($,’CALIBRATOR’,’XYZ’,’ABC2’,’456’,$,$,$,$);
#8=SOFTWARE($,’XYZ’,’ABC3’,’3.0’);
#9=BALL_BAR(‘BALL BAR BOX 123’,(#6,#7),#8,0.1,$,
 .BALL_BAR.,.T.,.F.,.F.,.F.,$,0.5,.T.);
#10=PLANE((.X.,$),(.Y.,$));

21

#11=MACHINE_POSITION(((‘X’,400.0),(‘Y’,350.0),(‘Z’,100.0)));
#12=TOOL_VECTOR(0,0,-100.0);
#13=SETUP_DYNAMIC(0, 360.0, $,,125.0, $,$,$,$);
#14=SETUP_CIRCULAR_DYNAMIC(‘2434’,.DYNMAIC.,#10,$,#11,#12,1,$,150.0,150.0,

0,1500.0,180.0,.T.,(($,’TABLE’,$,$)),11.5,$,.R.,.LINEAR.,$,.KINEMATIC.,
$,$,$,#13,$,0.5);

#15=RUN_DATA_CIRCULAR(.POSITIVE.,5.0,22.0,122.0,$,(($,(22.4))),
(1.5,0.5,0.6,0.2,0.4,….));

#16=RUN_DATA_CIRCULAR(.NEGATIVE.,8.0,24.0,112.0,$,(($,(22.4))),
(0.5,0.5,0.6,0.2,0.4,…));

#17=RESULT(#5,$,((‘LS_RADIUS_ERROR’,122.0,.POSITIVE.),
(‘CIRCULARITY’,11.0,.POSITIVE.)));

#18=RESULT(#5,$,((‘LS_RADIUS_ERROR’,112.0,.NEGATIVE.),
(‘CIRCULARITY’,14.0,.NEGATIVE.)));

#19=RESULT(#5,$,((‘LS_RADIUS_ERROR’,117.0,.BIDIRECTIONAL.),
(‘CIRCULARITY’,22.0,.BIDIRECTIONAL.)));

#20=STANDARD(‘ISO’,’230-4’,$,1996,$,$,$,$);
#21=RESULT(#20,$,((‘LS_RADIUS_ERROR’,117.0,.BIDIRECTIONAL.),

(‘CIRCULARITY’,22.0,.BIDIRECTIONAL.),(‘HYSTERESIS’,12.0,.BIDIRECTIONAL.)));
#22=TEST(‘BB0699A.RTB’,.CIRCULAR.,#1,#2,.PERIODIC.,#3,#4,’JOHN DOE’,#5,

#9,#14,(#15,#16),(#17,#18,#19,#21),’THIS IS AN EXAMPLE’);
ENDSEC;
END-ISO-10303-21;

3.2 XML Document

XML, an extensible markup language, is a universal format for structured documents and data on the Web
[10]. The language helps make information exchange among a globally distributed computing environment
possible. XML allows precise encoding of structured information. The XML source contains both data and
an indication of the meaning of the data. XML is for the digital representation of documents.

A document type definition (DTD) is the set of rules for using XML to represent documents of a particular
type. A DTD is a series of definitions for element types, attributes, entities, and notations. DTD is optional
for an XML document. Documents that do not have a DTD are not really invalid, but they are not valid
either, because they cannot be validated against a DTD.

The following is an XML document sample. This XML document is well-formed, which means that the
tags are properly constructed. This XML document, however, does not contain a document type definition
(DTD)2. Our intention for this subsection is to demonstrate the XML implementation of the EXPRESS
model, the development of the DTD will be the topic for another report. An XML document is composed
of a series of characters. It has two main parts: a prolog and a document instance. The prolog is optional,
and describes the XML version, DTD, and other characteristics of the document. The document instance
follows the prolog and contains the actual document data organized as a hierarchy of elements. An XML
source is made up of XML elements, each of which consists of a start-tag, the element content, and an
end-tag. An XML start-tag consists of the less-than symbol (<), the name of the element, and a greater-

2 A document type definition (DTD) is the set of rules for using XML to represent documents of a particular type. A DTD is a
series of definitions for element types, attributes, entities, and notations. DTD is optional for an XML document. Documents
that do not have a DTD are not really invalid, but they are not valid either, because they cannot be validated against a DTD.

22

than symbol (>). Start-tags can also include attributes. An XML end-tag consists of the string “</”, the
same element name as in the start-tag, and a greater-than symbol (>).

<?xml version =”1.0”?>

<TEST>
<ID>BB0699A.RTB</ID>
<TEST_CLASS>CIRCULAR</TEST_CLASS>
<DATE><YYYY>1999</YYYY><MM>06</MM><DD>22</DD></DATE>
<TIME><HH>10</HH><MM>06</MM><SS>00</SS></TIME>
<WHY>PERIODIC</WHY>
<MACHINE>

<ID>2434</ID>
<MANUFACTURER>XYZ</MANUFACTURER>
<MACHINE_MODEL>ABC</MACHINE_MODEL>
<SERIAL_NUMBER>123</SERIAL_NUMBER>
<LOCATION>SHOPS</LOCATION>

</MACHINE>
<CONDITIONS>

<COMPENSATION>YES</COMPENSATION>
<TEMP_ENVIRONMENT>22.5</TEMP_ENVIRONMENT>

</CONDITIONS>
<OPERATOR> JOHN DOE</OPERATOR>
<STANDARD>

<ORGANIZATION>ASME</ORGANIZATION>
<STANDARD_NUMBER>B5.57</STANDARD_NUMBER>
<YEAR>1997</YEAR>

</STANDARD>
<EQUIPMENT>

<ID>BALL BAR BOX 123</ID>
<COMPONENT>

<DESCRIPTION>BALLBAR</DESCRIPTION>
<MANUFACTURER>XYZ</MANUFACTURER>
<COMPONENT_MODEL>ABC1</COMPONENT_MODEL>
<SERIAL_NUMBER>123</SERIAL_NUMBER>

</COMPONENT>
<COMPONENT>

<DESCRIPTION>CALIBRATOR </DESCRIPTION>
<MANUFACTURER>XYZ</MANUFACTURER>
<COMPONENT_MODEL>ABC2</COMPONENT_MODEL>
<SERIAL_NUMBER>456</SERIAL_NUMBER>

</COMPONENT>
<SOFTWARE>

<MANUFACTURER>XYZ</MANUFACTURER>
<NAME>ABC3</NAME>
<VERSION_NUMBER>3.0</VERSION_NUMBER>

</SOFTWARE>
<RESOLUTION>0.1</RESOLUTION>
<EQUIPMENT_CLASS>BALL_BAR</EQUIPMENT_CLASS>
<ABSOLUTE> YES</ABSOLUTE>
<FILTER_LS_CENTER>NO</FILTER_LS_CENTER>
<FILTER_LS_RADIUS>NO</FILTER_LS_RADIUS>
<TEMP_REFERENCE_COMP>NO</TEMP_REFERENCE_COMP>
<TEMP_REFERENCE_COEFFICIENT>0.5</TEMP_REFERENCE_COEFFICIENT>
<CALIBRATOR>YES</CALIBRATOR>

</EQUIPMENT>
<SETUP>

23

<ID>2434</ID>
<MEAS_MODE>DYNAMIC</MEAS_MODE>
<PLANE><X>X</X><Y>Y</Y></PLANE>
<CENTER>

<AXIS_POSITION>
<AXIS>X</AXIS><POSITION>400</POSITION>

</AXIS_POSITION>
<AXIS_POSITION>

<AXIS>Y</AXIS><POSITION>350</POSITION>
</AXIS_POSITION>
<AXIS_POSITION>

<AXIS>Z</AXIS><POSITION>100</POSITION>
</AXIS_POSITION>

</CENTER>
<TOOL_VECTOR><X>0</X><Y>0</Y><Z>-100</Z></TOOL_VECTOR>
<SPINDLE_NUMBER>1</SPINDLE_NUMBER>
<RADIUS_MACHINE>150</RADIUS_MACHINE>
<RADIUS_REFERENCE>150</RADIUS_REFERENCE>
<INCLINATION>0</INCLINATION>
<FEEDRATE>1500</FEED_RATE>
<OVERSHOOT>180</OVER_SHOOT>
<TEMP_MATERIAL_COMP>YES</TEMP_MATERIAL_COMP>
<TEMP_MATERIAL_SENSOR><LOCATION>TABLE</LOCATION></TEMP_MATERIAL_SENSOR>
<TEMP_MATERIAL_COEFFICIENT>11.5</TEMP_MATERIAL_COEFFICIENT>
<POINT_MODE>R</POINT_MODE>
<INTERPOLATION>LINEAR</INTERPOLATION>
<ALIGNMENT_METHOD>KINEMATIC</ALIGNMENT_METHOD>
<SETUP_DYNAMIC><TARGET_START>0</TARGET_START><TARGET_END>360</TARGET_END>

<SAMPLE_RATE>125</SAMPLE_RATE></SETUP_DYNAMIC>
<NC_CIRCULARITY>0.5</NC_CIRCULARITY>

</SETUP>
<RUN_DATA>

<APPROACH_DIRECTION>POSITIVE</APPROACH_DIRECTION>
<LS_CENTER_OFFSET_X>5</LS_CENTER_OFFSET_X>
<LS_CENTER_OFFSET_Y>22</LS_CENTER_OFFEST_Y>
<LS_RADIUS_ERROR>122</LS_RADIUS_ERROR>
<TEMP_MATERIAL><DATA>22.4</DATA></TEMP_MATERIAL>
<POINTS>1.5 0.5 0.6 0.2 0.4 ….. </POINTS>

</RUN_DATA>
<RUN_DATA>

<APPROACH_DIRECTION>NEGATIVE</APPROACH_DIRECTION>
<LS_CENTER_OFFSET_X>8</LS_CENTER_OFFSET_X >
<LS_CENTER_OFFSET_Y>24</LS_CENTER_OFFSET_Y>
<LS_RADIUS_ERROR>112</LS_RADIUS_ERROR>
<TEMP_MATERIAL><DATA>22.4</DATA></TEMP_MATERIAL>
<POINTS>0.5 0.5 0.6 0.2 0.4 ….. </POINTS>

</RUN_DATA>
<RESULT>

<STANDARD>
<ORGANIZATION>ASME</ORGANIZATION>
<STANDARD_NUMBER>B5.57</STANDARD_NUMBER><YEAR>1997</YEAR>

</STANDARD>
<PARAMETER>

<NAME>LS_RADIUS_ERROR</NAME><VAL>122</VAL>
<APPROACH_DIRECTION>POSITIVE</APPROACH_DIRECTION>

</PARAMETER>
<PARAMETER>

24

<NAME>CIRCULARITY</NAME><VAL>11</VAL>
<APPROACH_DIRECTION>POSITIVE</APPROACH_DIRECTION>

</PARAMETER>
</RESULT>
<RESULT>

<STANDARD>
<ORGANIZATION>ASME</ORGANIZATION>
<STANDARD_NUMBER>B5.57</STANDARD_NUMBER><YEAR>1997</YEAR>

</STANDARD>
<PARAMETER>

<NAME>LS_RADIUS_ERROR</NAME><VAL>112</VAL>
<APPROACH_DIRECTION>NEGATIVE</APPROACH_DIRECTION>

</PARAMETER>
<PARAMETER>

<NAME>CIRCULARITY</NAME><VAL>14</VAL>
<APPROACH_DIRECTION>NEGATIVE</APPROACH_DIRECTION>

</PARAMETER>
</RESULT>
<RESULT>

<STANDARD>
<ORGANIZATION>ASME</ORGANIZATION>
<STANDARD_NUMBER>B5.57</STANDARD_NUMBER><YEAR>1997</YEAR>

</STANDARD>
<PARAMETER>

<NAME>LS_RADIUS_ERROR</NAME><VAL>117</VAL>
<APPROACH_DIRECTION>BIDIRECTIONAL</APPROACH_DIRECTION>

</PARAMETER>
<PARAMETER>

<NAME>CIRCULARITY</NAME><VAL>22</VAL>
<APPROACH_DIRECTION>BIDIRECTIONAL</APPROACH_DIRECTION>

</PARAMETER>
</RESULT>
<RESULT>

<STANDARD>
<ORGANIZATION>ISO</ORGANIZATION>
<STANDARD_NUMBER>230-4</STANDARD_NUMBER><YEAR>1996</YEAR>

</STANDARD>
<PARAMETER>

<NAME>LS_RADIUS_ERROR</NAME><VAL>117</VAL>
<APPROACH_DIRECTION>BIDIRECTIONAL</APPROACH_DIRECTION>

</PARAMETER>
<PARAMETER>

<NAME>CIRCULARITY</NAME><VAL>22</VAL>
<APPROACH_DIRECTION>BIDIRECTIONAL</APPROACH_DIRECTION>

</PARAMETER>
<PARAMETER>

<NAME>HYSTERESIS</NAME><VAL>12</VAL>
<APPROACH_DIRECTION>BIDIRECTIONAL</APPROACH_DIRECTION>

</PARAMETER>
</RESULT>
<COMMENT>THIS IS AN EXAMPLE</COMMENT>

</TEST>

25

3.3 Relational Tables

Database technology has evolved rapidly. The evolution has moved from simple files to the use of network
and hierarchical database management systems, and to today’s relational systems and object-oriented
systems. Evolving technology has made data sharing a realistic alternative. Moreover, today’s generation
of powerful, inexpensive workstation computers enables users to design software that maintains and
distributes data quickly and inexpensively. Relational database management systems are generally
desirable for data transfer for the manufacturing community.

All information in a relational database is represented explicitly as values in tables. The Structured Query
Language (SQL) [11] was developed to service a relational database. SQL was originally made an ANSI
(the American National Standards Institute) standard in 1986, was revised and extended in 1989, and
accepted by the ISO (the International Organization for Standards) in 1992. SQL is a set of commands
that are used to create and maintain database tables, manipulate and retrieve data from the relational
databases.

The following is a sample of relational tables for the EQUIPMENT entity. These tables have been
manually mapped from the respective portion of the EXPRESS information model. Our intention for this
subsection is to demonstrate the relational database implementation of the EXPRESS model, the
development of the SQL statements that map the complete MACHINE_TOOL_FORMANCE_TESTS
schema will be the topic for another report.

a) SQL Statements:

CREATE TABLE OID_MAPPING (
OID_KEY INTEGER NOT NULL PRIMARY KEY,
ENTITY_TYPE VARCHAR(80)

);

CREATE TABLE COMPONENT (
COMPONENT_ID INTEGER NOT NULL REFERENCE OID_MAPPING(OID_KEY),
ID VARCHAR(100) NULL,
DESCRIPTION VARCHAR(100) NULL,
MANUFACTURER VARCHAR(100),
COMPONENT_MODEL VARCHAR(100),
SERIAL_NUMBER VARCHAR(100),
CALIBRATION_DATE VARCHAR(100) NULL,
CALIBRATION_EXP_DATE VARCHAR(100) NULL,
CERTIFICATE_NUMBER VARCHAR(100) NULL,
CALIBRATION_ORGANIZATION VARCHAR(100) NULL

);

CREATE TABLE LIST_OF_COMPONENT (
LIST_OF_COMPONENT_ID INTEGER NOT NULL REFERENCE OID_MAPPING(OID_KEY),
COMPONENT_ID INTEGER,
COMPONENT_INDEX INTEGER

);

CREATE TABLE SOFTWARE (
SOFTWARE_ID INTEGER NOT NULL REFERENCE OID_MAPPING(OID_KEY),
ID VARCHAR(100) NULL,

26

MANUFACTURER VARCHAR(100),
NAME VARCHAR(100),
VERSION_NUMBER VARCHAR(100)

);

CREATE TABLE EQUIPMENT (
EQUIPMENT_ID INTEGER NOT NULL REFERENCE OID_MAPPING(OID_KEY),
ID VARCHAR(100) NULL,
COMPONENTS_ID INTEGER NULL,
SOFTWARE_ID INTEGER NULL,
RESOLUTION DOUBLE PRECISION NULL,
SAMPLE_RATE_RAW DOUBLE PRECISION NULL

);

CREATE TABLE TEMP_SENSOR (
TEMP_SENSOR_ID INTEGER NOT NULL REFERENCE OID_MAPPING(OID_KEY),
NAME VARCHAR(100) NULL,
LOCATION VARCHAR(100),
CHANNEL VARCHAR(100) NULL,
SERIAL_NUMBER VARCHAR(100) NULL

);

CREATE TABLE LIST_OF_TEMP_SENSOR (
LIST_OF_TEMP_SENSOR_ID INTEGER NOT NULL REFERENCE OID_MAPPING(OID_KEY),
TEMP_SENSOR_ID INTEGER,
TEMP_SENSOR_INDEX INTEGER

);

CREATE TABLE EQUIPMENT_CIRCULAR (
EQUIPMENT_CIRCULAR_ID INTEGER NOT NULL REFERENCE OID_MAPPING(OID_KEY),
EQUIPMENT_CLASS VARCHAR(100),
ABSOLUTE INTEGER,
FILTER_LS_CENTER INTEGER,
FILTER_LS_RADIUS INTEGER,
TEMP_REFERENCE_COMP INTEGER,
TEMP_REFERENCE_SENSORS_ID INTEGER NULL,
TEMP_REFERENCE_COEFF DOUBLE PRECISION

);

CREATE TABLE BALL_BAR (
BALL_BAR_ID INTEGER NOT NULL REFERENCE OID_MAPPING(OID_KEY),
CALIBRATOR INTEGER NULL

);

b) Sample Data:

Table of OID_MAPPING

OID-KEY ENTITY-TYPE
 6 “COMPONENT”
 7 “COMPONENT”
 8 “SOFTWARE”
 9 “BALL_BAR”
100 “LIST_OF_COMPONENT”

27

Table of EQUIPMENT

EQUIPMENT-ID ID COMPONENT SOFTWARE RESOLUTION SAMPLE-RATE-RAW
9 “BALL BAR BOX 123” 100 8 0.1 -

Table of EQUIPMENT_CIRCULAR

EQUIPMENT-CIRCULAR-ID EQUIPMENT-CLASS ABSOLUTE FILTER-LS-CENTER FILTER-LS-RADIUS
9 “BALL_BAR” 1 0 0

TEMP-REFERENCE-COMP TEMP-REFERENCE-SENSOR TEMP-REFERENCE-COEFFICIENT
0 - 0.5

Table of COMPONENT

COMPONENT-ID ID DESCRIPTION MANUFACTURER COMPONENT-MODEL SERIAL-NUMBER
6 - “BALL_BAR” “XYZ” “ABC1” “123”
7 - “CALIBRATOR” “XYZ” “ABC2” “456”

CALIBRATION-DATE CALIBRATION-EXP-DATE CERTIFICATE-NUMBER CALIBRATION-ORGANIZATION
- - - -
- - - -

Table of LIST_OF_COMPONENT

LIST-OF-COMPONENT-ID COMPONENT-ID COMPONENT-INDEX
100 6 1
100 7 2

Table of SOFTWARE

SOFTWARE-ID ID MANUFACTURER NAME VERSION-NUMBER
8 - “XYZ” “ABC3” “3.0”

Table of BALL_BAR

BALL-BAR-ID CALIBRATOR
9 1

4. Use of the Information Model
The information model, MACHINE_TOOL_PERFORMANCE_TESTS, presented in section 2.0 specifies
the information necessary to represent the properties and results of machine-tool-performance tests. The
model has been successfully parsed using fedex, one of the applications in the NIST EXPRESS Toolkit
[12]. The NIST EXPRESS Toolkit is a software library for building software tools for manipulating

28

EXPRESS information models, and fedex is the tool that reports syntactic and semantic errors in
EXPRESS schemas.

The MACHINE_TOOL_PERFORMANCE_TESTS information model is independent of any
implementation method. Several commercial and non-commercial software tools exist to support the
implementation of EXPRESS information models. A document describing software tools and services for
EXPRESS was published by Peter Wilson [13] and is available from the ISO TC184/SC4 homepage [14].
NIST has released a STEP Toolset for manipulating STEP data; the Toolset is in the public domain and is
also available from SOLIS. The implementors can take advantage of these software tools to generate
various types of data structures from the information model in order to benefit the exchange of machine-
tool-performance data.

5. Conclusion
This report describes the approach being taken by NIST in developing a neutral format for exchanging
machine-tool-performance data. An information model of machine-tool-performance tests in EXPRESS
has been developed. The implementations of the information model using the STEP exchange structure,
XML, and SQL have been demonstrated. The information model will continue to evolve based on
experience and feedback from others involved in this effort. Our objective is to promote the information
model to an official standard. Broader participation in this effort will help the standardization work proceed
more quickly and will also enhance the system performance and user satisfaction.

29

 APPENDIX A: EXPRESS Keywords

The following is the list of EXPRESS keywords that are used in the information model in this report. Brief
definitions of these keywords are summarized for readers’ convenience. Further information, refer to "The
EXPRESS Language Reference Manual" [1].

AND - The reserve word AND is an AND operator. The AND operator requires two logical operands
and evaluates to a logical value.

BOOLEAN - A BOOLEAN data type represents a TRUE or FALSE value.

END_ENTITY - The key word END_ENTITY is used to terminate an entity declaration.

END_SCHEMA - The key word END_SCHEMA is used to terminate a schema declaration.

END_TYPE - The key word END_TYPE is used to terminate a type declaration.

ENTITY - The key word ENTITY is used to specify an entity type. An entity type characterizes a
collection of real-world physical or conceptual objects that have common properties. Any entity declared
in a schema can be used as the data type of an attribute, local variable, or formal parameter. Using an
entity as an attribute's data type establishes a relationship between the two entities.

ENUMERATION - The key word ENUMERATION is used to specify an enumeration data type. An
enumeration data type is an ordered set of values represented by names. Each enumeration item belongs
only to the data type that defines it and must be unique within that type definition.

FALSE – The reserve word FALSE is a LOGICAL constant representing the logical notion of falsehood.
It is compatible with the BOOLEAN and LOGICAL data types.

INTEGER - The key word INTEGER is used to specify an integer data type. An integer data type
represents a value of an integer number, the magnitude of which is unconstrained.

LIST - The key word LIST is used to specify a list data type. A list data type represents an ordered
collections of like elements. The number of elements that can be held in a list can optionally be
specified. If the size is not specified, the list can hold any number of elements. Duplicate elements are
allowed in a list.

OF - The key word OF is used together with other keywords such as BAG, LIST, SET,
ENUMERATION, SUBTYPE, SUPERTYPE, etc.

OPTIONAL - The key word OPTIONAL is used to indicate that the attribute need not have a value in
order for an instance of that entity to be valid. In a given entity instance, an attribute marked as optional
may have no actual value, in which case the value is said to be null. The null value function (NVL), which
returns either the input value or an alternate value in the case where the input has a null value, may be used
when a null value is unacceptable .

30

OR - The reserve word OR is an OR operator. The OR operator requires two logical operands and
evaluates to a logical value.

REAL - The key word REAL is used to specify a real data type. A real data type represents rational,
irrational, and scientific real numbers. Rational and irrational numbers have infinite resolution and are
exact. Scientific numbers represent values that are known only to a specified precision.

SCHEMA - The key word SCHEMA is used to specify a schema type. A schema declaration creates a
new scope in which the following objects may be declared: constant, entity, function, procedure, rule, and
type.

STRING - The key word STRING is used to specify a string data type. A string data type represents a
sequence of zero or more characters.

TRUE – The reserve word TRUE is a LOGICAL constant representing the logical notion of truth. It is
compatible with the BOOLEAN and LOGICAL data types.

TYPE - The key word TYPE is used to specify a defined data type. A defined data type is a user
extension to the set of standard data types. A defined data type can be used as any other data type by
referencing the name given to it.

UNIQUE - The key word UNIQUE is used to specify a unique rule. A unique rule specifies either a
single attribute name or a list of two or more attribute names. A rule that specifies a single attribute name
is a "simple uniqueness constraint", requiring that any value of that attribute is associated with only one
instance of that entity type. A rule that specifies two or more attribute names is a "joint uniqueness
constraint", requiring that any set of values, one from each of the named attributes, is associated with only
one instance of that entity type.

WHERE - The key word WHERE is used to specify domain rules. Domain rules constrain the values of
individual attributes or combinations of attributes for every entity instance.

31

REFERENCES:

[1] ISO 10303-11:1994, “Industrial Automation Systems and Integration - Product Data Representation and
Exchange - Part 11: Description Methods: The EXPRESS Language Reference Manual.”

[2] Soons, Johannes A., “Data Specification for Machine Tool Performance Tests, Version 2.3e,”
http://mtrws.nist.gov/dictionary/dictionary.htm.

[3] Jurrens, Kevin K,, Fowler, James E., Algeo, Mary Elizabeth A., “Modeling of Manufacturing Resource
Information,” National Institute of Standards and Technology, NISTIR 5707, NIST, Gaithersburg, MD,
1995.

[4] ASME B5.54:1992, “Methods for Performance Evaluation of Computer Numerically Controlled
Machining Centers.”

[5] ASME B5.57:2000, “Methods for Performance Evaluation of Computer Numerically Controlled Lathes
and Turning Centers.”

[6] ISO 230, “Test Code for Machine Tools, Parts 1-6.”
ISO 230-1:1996, “Geometric Accuracy of Machines Operating under No-load or Finishing

Conditions.”
ISO 230-2:1997, “Determination of Accuracy and Repeatability of Positioning Numerically

Controlled Axes.”
ISO/FDIS 230-3:2000, “Determination of Thermal Effects.”
ISO 230-4:1996, “Circular Tests for Numerically Controlled Machine Tools.”
ISO 230-5:2000, “Determination of the Noise Emission.”
ISO/DIS 230-6:2000, “Diagonal Displacement Test.”

[7] ISO 10303-1:1994, “Industrial Automation Systems and Integration - Product Data Representation and
Exchange - Part 1: Overview and Fundamental Principles.”

[8] Lee, Y. Tina, “Information Modeling: From Design to Implementation,” Proceedings of the Second
World Manufacturing Congress, Durham, U.K., September 27-30, 1999.

[9] ISO 10303-21:1994, “Industrial Automation Systems and Integration - Product Data Representation and
Exchange - Part 21: Implementation Methods: Clear Text Encoding of the Exchange Structure. ”

[10] The World Wide Web Consortium, “Extensible Markup Language (XML) 1.0,”
http://www.w3.org/TR/REC-xml, 1998.

[11] Stephens, R. K., Plew, R. R., Morgan, B., and Perkins, J., “Teach Yourself SQL in 21 days, Second
Edition,” SAMS Publishing, Indianapolis, IN, 1997.

[12] Libes, Don, “The NIST EXPRESS Toolkit: Introduction and Overview,” National Institute of
Standards and Technology, NISTIR 5242, NIST, Gaithersburg, MD, 1993.

[13] Wilson, P. R., “EXPRESS Tools and Services,” EXPRESS User Group Committee, 1994.

32

[14] ISO TC184 SC4: On-line Information Service (SOLIS), http://www.nist.gov/sc4/www/nsol_hp.htm.

